Создается электричество. Изобретение электричества: история, применение, получение

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком. Оно помогало развиваться нашей цивилизации с самого начала своего появления....

Электричество можно смело назвать одним из самых важных открытий, которые были когда-либо сделаны человеком . Оно помогало развиваться нашей цивилизации с самого начала своего появления. Это самый экологический вид энергии на планете, и вероятно, что именно электричество сможет заменить все сырьевые ресурсы, если оных более не останется на Земле.

Термин пошел от греч. «электрон», и означает «янтарь». Ещё в VII веке до нашей эры древнегреческий философ Фалес заметил, что янтарь имеет свойство притягивать к себе волосы и легкие материалы, например, пробковую стружку. Таким образом, он стал первооткрывателем электричества . Но только лишь к средине XVII века наблюдения Фалеса были подробно изучены Отто фон Герике. Этот немецкий физик создал первый в мире электроприбор. Это был вращающийся шар из серы, зафиксированный на металлическом штифте и был похож на янтарь имеющий силу притяжения и отталкивания.

Фалес — первооткрыватель электричества

За пару столетий «электрическую машину» Герике заметно усовершенствовали такие немецкие ученые, как Бозе, Винклер, а также англичанин Хоксби. Эксперименты с электрической машиной дали толчок к новым открытиям в XVIII столетии : в 1707 году физик дю Фей родом из Франции, выявил разницу между электричеством, которое мы получаем от трения стеклянного круга, и которое мы получаем от трения круга из древесной смолы. В 1729 году английские ученые Грей и Уилер выявили, что некоторые тела могут пропускать через себя электричество, и они были первыми, кто сделал акцент на том, что тела можно разделять на два типа: проводники и непроводники электричества.

Очень значительное открытие было изложено в 1729 году голландским физиком Мушенбруком, который родился в Лейдене. Этот профессор философии и математики был первым, кто выявил, что стеклянная банка, залепленная с двух сторон листками станиоля, может скапливать электричество. Так как опыты проводились в городе Лейдене, прибор так и назвали – лейденская банка .

Ученый и общественный деятель Бенджамин Франклин привел одну теорию в которой он говорил, что существует как положительное, так и отрицательное электричество. Ученый смог объяснить сам процесс заряда и разряда стеклянной банки и привел доказательства того, что обкладки лейденской банки можно непринужденно электризовать разными зарядами электричества.

Бенджамин Франклин, более чем достаточно уделил внимания познанию атмосферного электричества, как и русские ученые Г. Рихман, а также М.В. Ломоносов. Ученый изобрел громоотвод , с помощью которого обосновал, что сама молния возникает от разности электрических потенциалов.

В 1785 году был выведен закон Кулона, который описывал между точечными зарядами электрическое взаимодействие. Закон был открыт Ш. Кулоном ученым из Франции, который создал его на основе многократных экспериментов со стальными шариками.

Одним из великих открытий, которое обнаружил итальянский ученый Луиджи Гальвани в 1791 году, было то, что электричество могло появляться при соприкосновении двух неоднородных металлов с телом препарированной лягушки.

В 1800 году итальянский ученый Алессандро Вольта изобрел химическую батарею. Это открытие было важным в изучении электричества . Этот гальванический элемент состоял из серебряных пластинок круглой формы, между пластинками были смоченные предварительно в соленой воде куски бумаги. Благодаря химическим реакциям химическая батарея регулярно получала электрический ток.

В 1831 году известный ученый Майкл Фарадей обнаружил электромагнитную индукцию и на этом базисе изобрел первый в мире электрогенератор. Открыл такие понятия, как магнитное и электрическое поле и изобрел элементарный электродвигатель .

Человек, который вложил огромный вклад в изучение магнетизма и электричества, и применял свои исследования на практике, был изобретатель Никола Тесла. Бытовые и электроприборы, которые создал ученый – незаменимы. Этого человека можно назвать одним из великих изобретателей XX ст.

Кто первым открыл электричество?

Отыскать людей, которые не знали бы, что такое электроэнергия, сложно. А вот кто открыл электричество? Об этом имеет представление далеко не каждый. Нужно разобраться, что же это за явление, кто первым его открыл и в каком году все произошло.

Пара слов об электричестве и его открытии

История открытия электричества довольно обширна. Впервые это произошло в далеком 700 году до н.э. Пытливый философ из Греции по имени Фалес обратил внимание, что янтарь способен притягивать маленькие предметы, когда происходит трение с шерстью. Правда, после этого все наблюдения на долгое время закончились. Но именно он считается первооткрывателем статического электричества.

Дальнейшее развитие произошло значительно позднее — через несколько веков. Врач Уильям Гильберт, которому были интересны основы физики, стал основоположником науки об электричестве. Он изобрел нечто похожее на электроскоп, назвав его версор. Благодаря ему Гильберт понял, что множество минералов притягивают маленькие предметы. Среди них алмазы, стекло, опалы, аметисты и сапфиры.

При помощи версора Гильберт сделал пару любопытных наблюдений:

  • пламя влияет на электрические свойства тел, возникающие при трении;
  • молния с громом — это явления электрической природы.

Слово «электричество» появилось в 16 столетии. В 60-х годах XVII века бургомистр Отто фон Герике создал специальную машину для опытов. Благодаря ей он наблюдал за эффектами притяжения и отталкивания.

После этого исследования продолжились. Использовали даже электростатические машины. В начале 30-х годов XVIII века Стивен Грей преобразовал конструкцию Герике. Он поменял серный шарик на стеклянный. Стивен продолжил эксперименты и обнаружил такое явление, как электропроводность. Несколько позднее Шарль Дюфе обнаружил два вида зарядов — от смол и стекла.

В 40-м году XVIII века Клейст и Мушенбрук придумали «лейденскую банку», ставшую первым конденсатором на Земле. Бенджамин Франклин говорил, что заряд накапливает стекло. Благодаря ему появились обозначения «плюс» и «минус» для электрических зарядов, а также «проводник», «заряд» и «конденсатор».

Бенджамин Франклин вел насыщенную событиями жизнь. Удивительно то, что у него вообще хватало времени на изучение электричества. Однако именно Бенджамин Франклин изобрел первый громоотвод.

В конце XVIII столетия Гальвани выпустил «Трактат о силе электричества при движении мышц». В начале XIX века изобретатель из Италии Вольта придумал новейший источник тока, назвав его Гальванический элемент. Эта конструкция выглядит как столб из серебряных и цинковых колец. Они разделены бумагами, которые смочили в соленой воде. Так и произошло открытие гальванического электричества. Через 2 года изобретатель из России Василий Петров открыл Вольтову дугу.

Примерно в тот же временной период Жан Антуан Нолле сконструировал электроскоп. Он зарегистрировал быстрое «стекание» электричества с тел острой формы. На основе этого появилась теория о том, что ток влияет на живые существа. Благодаря обнаруженному эффекту появился медицинский электрокардиограф.

С 1809 году в сфере электричества случилась революция. Изобретатель из Англии Деларю придумал лампочку накаливания. Спустя век были созданы приборы с вольфрамовой спиралью, которые заполняли инертным газом. Ирвинг Ленгмюр стал их основоположником.

Прочие открытия

В XVIII столетии знаменитый в дальнейшем Майкл Фарадей придумал учение об электромагнитных полях.

Электромагнитное взаимодействие обнаружил во время своих экспериментов ученый из Дании по имени Эрстед в 1820 году. В 1821 году физик Ампер в собственном трактате связал электричество и магнетизм. Благодаря этим исследованиям зародилась электротехника.

В 1826 году Георг Симон Ом провел опыты и обозначил главный закон электрической цепи. После этого возникли специализированные термины:

  • электродвижущая сила;
  • проводимость;
  • падение напряжения в сети.

Андре-Мари Ампер позднее придумал правило, как определять направление тока на магнитную стрелку. У него было множество названий, но больше всего прижилось «правило правой руки». Именно Ампер сконструировал усилитель электромагнитного поля — катушки с множеством витков. Они сделаны из медных проводов, в которых с установлены железные сердечники. В 30-х годах XIX века был изобретен электромагнитный телеграф на основании вышеописанного правила.

В 20-х годах XX века в Советском Союзе правительство начало глобальную электрификацию. В этот период возник термин «лампочка Ильича».

Волшебное электричество

Дети должны знать, что такое электричество. Но обучать нужно в игровой форме, чтобы полученные знания не наскучили в первые же минуты. Для этого можно посетить открытое занятие «Волшебное электричество». В него входят следующие образовательные задачи:

  • обобщение у детей информации про электричество;
  • расширить знания о том, где обитает электричество и чем оно может помочь людям;
  • познакомить ребенка с причинами возникновения статического электричества;
  • объяснить правила безопасности в обращении с бытовыми электроприборами.

Также ставятся и иные задачи:

  • у ребенка формируется желание открывать что-то новое;
  • дети учатся взаимодействовать с окружающим миром и его объектами;
  • развивается мышление, наблюдение, способности к анализу и умение делать правильные выводы;
  • осуществляется активная подготовка к школе.

Занятие необходимо и в воспитательных целях. Во время его проведения:

  • подкрепляется интерес к изучению окружающего мира;
  • появляется удовлетворение от открытий, которые получились в результате проведенных экспериментов;
  • воспитывается умение работать в коллективе.

В качестве материала предоставляются:

  • игрушки с батарейками;
  • пластмассовые палочки по числу присутствующих;
  • шерстяная и шелковая ткани;
  • обучающая игрушка «Собери предмет»;
  • карточки «Правила по использованию бытовых электроприборов»;
  • цветные шарики.

Для ребенка это будет отличным занятием на лето.

Заключение

Мы не можем точно утверждать, кто на самом деле первым открыл электричество. Есть все основания полагать, что о нем знали еще до Фалеса. Но большинство ученых (Уильям Гилберт, Отто фон Герике, Вольт Ом, Ампер) в полной мере внесли собственный вклад в развитие электричества.

Альтернативная версия истории открытия электричества

Науке не известно, когда произошло открытие электричества. Еще древние люди наблюдали молнии. Позже они заметили, что некоторые тела, если их потереть друг о друга, могут притягиваться или отталкиваться. Свойство притягивать или отталкивать небольшие предметы хорошо проявлялось у янтаря.
В 1600 г. появился первый термин, связанный с электричеством, — электрон. Ввел его Уильям Гилберт, заимствовавший это слово из греческого языка, где оно обозначало янтарь. Позже такие свойства были обнаружены у алмаза, опала, аметиста, сапфира. Эти материалы он назвал электриками, а само явление — электричеством.
Отто фон Герике продолжил исследования Гилберта. Он изобрел электростатическую машину — первый прибор для изучения электрических явлений. Она представляла собой вращающийся металлический стержень с шаром, сделанным из серы. При вращении шар терся о шерсть и приобретал значительный заряд статического электричества.

В 1729 г. англичанин Стивен Грей усовершенствовал машину Герике, заменив в ней серный шар на стеклянный.

В 1745 г. Юрген Клейст и Питер Мушенбрук изобрели лейденскую банку, представляющую собой стеклянную емкость с водой, способную накопить значительный заряд. Она стала прототипом современных конденсаторов. Ученые ошибочно полагали, что накопителем заряда является вода, а не стекло. Позже вместо воды стали использовать ртуть.
Бенджамин Франклин расширил набор терминов для описания электрических явлений. Он ввел понятия: заряд, два рода зарядов, плюс и минус для их обозначения. Ему принадлежат термины конденсатор, проводник.
Множество проведенных в 17 веке экспериментов носило описательный характер. Практического применения они не получили, но послужили фундаментом для развития теоретических и практических основ электричества.

Первые научные эксперименты с электричеством

Научные исследования электричества начались в 18 веке.

В 1791 г. итальянский врач Луиджи Гальвани обнаружил, что ток, протекающий по мышцам препарированных лягушек, вызывает их сокращение. Свое открытие он назвал животным электричеством. Но Луиджи Гальвани не смог полностью объяснить полученные результаты.

Открытие животного электричества заинтересовало итальянца Александро Вольта. Известный ученый повторил опыты Гальвани. Он повторно доказал, что живые клетки вырабатывают электрический потенциал, но причина его появления химическая, а не животная. Так произошло открытие гальванического электричества.
Продолжая свои опыты, Александро Вольта сконструировал устройство, вырабатывающее напряжение без электростатической машины. Это была стопка чередующихся медных и цинковых пластин, разделенных смоченными в растворе соли кусочками бумаги. Устройство получило название вольтового столба. Оно стало прототипом современных гальванических элементов, служащих для выработки электроэнергии.
Важно отметить, что Наполеон Бонапарт очень заинтересовался изобретением Вольта, и в 1801 г. пожаловал ему титул графа. А позже знаменитые физики решили в его честь назвать единицу измерения напряжения 1 В (вольт).

Луиджи Гальвани и Александро Вольта — великие экспериментаторы в области электричества. Но в 18 в. объяснить суть явлений они не могли. Построение теории электричества и магнетизма началось в 19 в.

Научные исследования электричества в 19 веке

Русский изобретатель Василий Петров, продолжая эксперименты Вольта, в 1802 г. открыл вольтову дугу. В его опытах использовались угольные электроды, которые вначале сдвигались, за счет протекания тока раскалялись, а затем раздвигались. Между ними возникала устойчивая дуга, способная гореть при напряжении всего в 40-50 вольт. При этом выделялось значительное количество тепла. Опыты Петрова впервые показали возможности практического применения электричества, способствовали изобретению лампы накаливания и электросварки. Для своих опытов В. Петров сконструировал батарею длиною 12 м. Она была способна создать напряжение 1700 вольт.

Недостатками вольтовой дуги были быстрое сгорание углей, выделение углекислого газа и копоти. За усовершенствование источника света взялись несколько величайших изобретателей того времени, каждый из которых внес свой вклад в развитие электрического освещения. Все они считали, что источник тепла и света должен находиться в стеклянной колбе, из которой выкачан воздух.
Идею использования металлической нити накаливания еще в 1809 г. предложил английский физик Деларю. Но в течение многих лет продолжались эксперименты с угольными стержнями и нитями.
В американских учебниках по электричеству утверждается, что отцом лампы накаливания является их соотечественник Томас Эдисон. Он внес огромный вклад в историю открытия электричества. Но опыты Эдисона по усовершенствованию ламп накаливания закончились в конце 1870-х гг., когда он отказался от металлической нити накала и вернулся к угольным стержням. Его лампы могли бесперебойно гореть около 40 часов.

Спустя 20 лет русский изобретатель Александр Николаевич Лодыгин изобрел лампу, в которой использовалась проволочная нить накала из тугоплавкого металла, скрученная в спираль. Из колбы был выкачан воздух, из-за которого происходило окисление нити и ее перегорание.
Крупнейшая компания мира по производству электротехнической продукции General Electric выкупила у Лодыгина патент на производство ламп с вольфрамовой нитью. Это позволяет считать, что отцом лампы накаливания является наш соотечественник.
Над усовершенствованием лампы накаливания работали химики и физики, и их открытия, изобретения и усовершенствования позволили создать лампу накаливания, которой люди пользуются сегодня.

В 19 в. электричество стало применяться не только для освещения.
В 1807 г. английскому химику Хэмфри Дэви электролитическим способом удалось выделить из раствора щелочные металлы натрий и калий. Других способов получения этих металлов в то время не было.
Его соотечественник Уильям Стэрджен в 1825 г. изобрел электромагнит. Продолжая исследования, он создал первую модель электродвигателя, работу которого продемонстрировал в 1832 г.

Становление теоретических основ электричества

Кроме изобретений, получивших практическое применение, в 19 в. началось построение теоретических основ электричества, открытие и формулировка основных законов.

В 1826 г. немецкий физик, математик, философ Георг Ом экспериментально установил и теоретически обосновал свой знаменитый закон, описывающий зависимость тока в проводнике от его сопротивления и напряжения. Ом расширил набор терминов, используемых в электричестве. Он ввел понятия электродвижущей силы, проводимости, падения напряжения.
Благодаря нашумевшим в научном мире публикациям Г. Ома, теория электричества стала бурно развиваться, но сам автор подвергся гонениям со стороны начальства и был уволен с должности школьного учителя математики.

Огромный вклад в развитие теории электричества внес французский философ, биолог, математик, химик Андре-Мари Ампер. По причине бедности родителей он вынужден был заниматься самообразованием. В возрасте 13 лет он уже овладел интегральным и дифференциальным исчислением. Это позволило ему получить математические уравнения, описывающие взаимодействия круговых токов. Благодаря трудам Ампера в электричестве появились 2 смежные области: электродинамика и электростатика. По неизвестным причинам Ампер в зрелом возрасте перестал заниматься электричеством и увлекся биологией.

Над развитием теории электричества трудились многие физики разных национальностей. Изучив их труды, выдающийся английский физик Джеймс-Клерк Максвелл построил единую теорию электрических и магнитных взаимодействий. Электродинамика Максвелла предусматривает наличие особой формы материи — электромагнитного поля. Свой труд, посвященной этой проблеме, он опубликовал в 1862 г. Теория Максвелла позволила описать уже известные электромагнитные явления и предсказать неизвестные.

История развития электрических средств связи

Как только у древних людей возникла потребность в общении, появилась необходимость в организации обмена сообщениями. История развития средств связи до открытия электричества многогранна и у каждого народа своя.

Когда люди оценили возможности электричества, встал вопрос о передаче информации с его помощью.
Первые попытки передачи электрических сигналов были предприняты сразу после опытов Гальвани. Источником энергии служил вольтов столб, приемником — лягушечьи лапки. Так появился первый телеграф, который долгое время усовершенствовался и модернизировался.

Для передачи информации ее сначала нужно было кодировать, а после приема раскодировать. Для кодирования информации американский художник Самюэл Морзе в 1838 г. придумал специальную азбуку, состоящую из комбинаций точек и тире, разделенных промежутками. Известна точная дата первой телеграфной передачи — 27 мая 1844 г. Связь была установлена между Балтимором и Вашингтоном, расположенных на расстоянии 64 км.

Средства связи такого рода умели передавать сообщения на большие расстояния, сохранять их на бумажной ленте, но имели и ряд недостатков. На кодирование и декодирование сообщений тратилось много времени, приемник и передатчик должны были обязательно соединяться проводами.

В 1895 г. русскому изобретателю Александру Попову удалось продемонстрировать работу первого беспроводного передатчика и приемника. В качестве приемного элемента использовалась антенна (или вибратор Герца), а в качестве регистрирующего элемента — когерер. Для питания прибора использовалась батарея постоянного тока с напряжением в несколько вольт.
В изобретении когерера велика заслуга французского физика Эдварта Бранли, открывшего возможность изменять сопротивление металлического порошка за счет воздействия на него электромагнитных волн.
Средства связи, построенные на основе передатчика и приемника Попова, служат и в настоящее время.

Сенсационное сообщение о своих открытиях в области передачи электромагнитных волн в 1891 г. сделал сербский ученый Никола Тесла. Но человечество не было готово принять его идеи и понять, как на практике применить изобретения Тесла. Через много десятилетий они легли в основу сегодняшних средств электронных коммуникаций: радио, телевидения, сотовой и космической связи.

Современную жизнь невозможно представить без электричества, этот тип энергии используется человечеством наиболее полно. Однако далеко не все взрослые люди способны вспомнить из школьного курса физики определение электрического тока (это направленный поток протекания элементарных частиц, имеющих заряд), совсем мало кто понимает, что же это такое.

Что такое электричество

Наличие электричества как явления объясняется одним из главных свойств физической материи – способностью обладать электрическим зарядом. Они бывают положительными и отрицательными, при этом объекты, обладающие разнополюсными знаками, притягиваются друг к другу, а «равнозначные», наоборот, отталкиваются. Движущиеся частицы также являются источником возникновения магнитного поля, что лишний раз доказывает связь между электричеством и магнетизмом.

На атомарном уровне существование электричества можно объяснить следующим образом. Молекулы, из которых состоят все тела, содержат атомы, составленные из ядер и электронов, циркулирующих вокруг них. Эти электроны могут при определенных условиях отрываться от «материнских» ядер и переходить на другие орбиты. Вследствие этого некоторые атомы становятся «недоукомплектованными» электронами, а у некоторых их в избытке.

Поскольку природа электронов такова, что они текут туда, где их не хватает, постоянное перемещение электронов от одного вещества к другому и составляет электрический ток (от слова «течь»). Известно, что электричество имеет направление от полюса «минус» к полюсу «плюс». Поэтому вещество с нехваткой электронов считается заряженным положительно, а с переизбытком – отрицательно, и именуется оно «ионами». Если речь идет о контактах электрических проводов, то положительно заряженный называется «нулевой», а отрицательно – «фаза».

В разных веществах расстояние между атомами различно. Если они очень маленькие, электронные оболочки буквально касаются друг друга, поэтому электроны легко и быстро переходят от одного ядра к другому и обратно, чем создается движение электрического тока. Такие вещества, например, как металлы, называются проводниками.

В других веществах межатомные расстояния относительно велики, поэтому они являются диэлектриками, т.е. не проводят электричество. Прежде всего, это резина.

Дополнительная информация . При испускании ядрами вещества электронов и их движении происходит образование энергии, которая прогревает проводник. Такое свойство электричества называется «мощность», измеряется она в ваттах. Также эту энергию можно преобразовывать в световую или другой вид.

Для непрерывного течения электричества по сети потенциалы на конечных точках проводников (от линий ЛЭП до домовой электропроводки) должны быть разными.

История открытия электричества

Что такое электричество, откуда оно берется, и прочие его характеристики фундаментально изучает наука термодинамика с сопредельными науками: квантовой термодинамикой и электроникой.

Сказать, что какой-либо ученый изобрел электрический ток, было бы неверным, ибо с древних времен много исследователей и ученых занимались его изучением. Сам термин «электричество» ввел в обиход греческий ученый-математик Фалес, это слово означает «янтарь», поскольку именно в опытах с янтарной палочкой и шерстью Фалесу получилось выработать статическое электричество и описать это явление.

Римлянин Плиний также занимался исследованием электрических свойств смолы, а Аристотель изучал электрических угрей.

В более позднее время первым, кто досконально стал изучать свойства электрического тока, стал В. Жильбер, врач английской королевы. Немецкий бургомистр из Магдебурга О.ф Герике считается создателем первой лампочки из натертого серного шарика. А великий Ньютон вывел доказательство существования статического электричества.

В самом начале 18 века английский физик С. Грей поделил вещества на проводники и непроводники, а голландским учёным Питером ван Мушенбруком была изобретена лейденская банка, способная накапливать электрический заряд, т. е. это был первый конденсатор. Американский ученый и политический деятель Б. Франклин впервые в научных терминах вывел теорию электричества.

Все 18 столетие было богатым на открытия в сфере электричества: установлена электрическая природа молнии, сконструировано искусственное магнитное поле, выявлено существование двух видов зарядов («плюс» и «минус») и, как следствие, двух полюсов (естествоиспытатель из США Р. Симмер), Кулоном открыт закон взаимодействия между точечными электрозарядами.

В следующем веке изобретены батарейки (итальянский ученый Вольта), дуговая лампа (англичанин Дейви), а также прототип первой динамо-машины. 1820 год считается годом зарождения электродинамической науки, сделал это француз Ампер, за что его имя присвоили единице для показаний силы электротока, а шотландец Максвелл вывел световую теорию электромагнетизма. Россиянин Лодыгин изобрел лампу накаливания, имеющую стержень из угля, – прародитель современных лампочек. Чуть более ста лет назад была изобретена неоновая лампа (французский ученый Жорж Клод).

И по сей день исследования и открытия в области электричества продолжаются, например, теория квантовой электродинамики и взаимодействия слабых электрических волн. Среди всех ученых, занимавшихся исследованием электричества, особое место принадлежит Николе Тесла –многие его изобретения и теории о том, как работает электричество, до сих пор не оценены по достоинству.

Природное электричество

Долгое время считалось, что электричества «самого по себе» не существует в природе. Это заблуждение развеял Б. Франклин, который доказал электрическую природу молний. Именно они, по одной из версий ученых, способствовали синтезу первых аминокислот на Земле.

Внутри живых организмов также вырабатывается электричество, которое порождает нервные импульсы, обеспечивающие двигательные, дыхательные и другие жизненно необходимые функции.

Интересно. Многие ученые считают человеческое тело автономной электрической системой, которая наделена функциями саморегуляции.

У представителей животного мира тоже имеется свое электричество. Например, некоторые породы рыб (угри, миноги, скаты, удильщики и другие) используют его для защиты, охоты, добывания пищи и ориентации в подводном пространстве. Особый орган в теле этих рыб вырабатывает электроэнергию и накапливает ее, как в конденсаторе, его частота – сотни герц, а напряжение – 4-5 вольт.

Получение и использование электричества

Электричество в наше время – это основа комфортной жизни, поэтому человечество нуждается в его постоянной выработке. Для этих целей возводятся различного рода электростанции (гидроэлектростанции, тепловые, атомные, ветровые, приливные и солнечные), способные с помощью генераторов вырабатывать мегаватты электричества. В основе этого процесса лежит преобразование механической (энергия падающей воды на ГЭС), тепловой (сжигание углеродного топлива – каменного и бурого угля, торфа на ТЭЦ) или межатомной энергии (атомного распада радиоактивных урана и плутония на АЭС) в электрическую.

Много научных исследований посвящено электрическим силам Земли, все они стремятся использовать атмосферное электричество для блага человечества – выработки электроэнергии.

Учеными предложено множество любопытных устройств генераторов тока, которые дают возможность добывать электричество из магнита. Они используют способности постоянных магнитов совершать полезную работу в виде крутящего момента. Он возникает в результате отталкивания между одноименно заряженными магнитными полями на статорном и роторном устройствах.

Электричество популярнее всех остальных источников энергии, поскольку обладает множеством преимуществ:

  • легкое перемещение до потребителя;
  • быстрый перевод в тепловой или механический вид энергии;
  • возможны новые области его применения (электромобили);
  • открытие все новых свойств (сверхпроводимость).

Электричество – это движение разнозаряженных ионов внутри проводника. Это большой подарок от природы, который люди познают с давних времен, и процесс этот еще не закончен, хотя человечество уже научилось добывать его в огромных объемах. Электричество играет огромную роль в развитии современного общества. Можно сказать, что без него жизнь большинства наших современников просто остановится, ведь недаром при отключении электричества люди говорят, что «отключили свет».

Видео

Физика электричества - это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба - все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.

О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона - отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности - протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.

Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как "Электричество"), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти - как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура - мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (— 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней - такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.

Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется - движение тока прекратится, и лампа погаснет.

Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.

Аналогично может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор - потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) - обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества - очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).

Существует невидимая сила, которая протекает внутри биологических объектов и неживой среды. Эта сила называется электричеством. Что такое электричество? Это энергия, создаваемая движением и взаимодействием заряженных частиц. Термин «электричество» произошел от греческого слова «электрон», которое переводится как «янтарь». Древние греки обнаружили, что, потерев этот камень, можно получить небольшой статистический заряд. Но создавать электрический ток для своих потребностей люди научились только в начале XIX века.

Что такое электричество и откуда оно возникает

Все окружающие нас неживые предметы, люди и даже воздух состоят из атомов. Атом представляет собой ядро, вокруг которого вращаются электроны. Это отрицательно заряженная частица, которая притягивается к ядру, но не соединяется с ним, так как находится в постоянном движении. Электроны нейтрализуют положительно заряженные частицы протоны. Поэтому атом в целом является электрически нейтральным.

Можно путем направленного перемещения электронов на другой атом. Такое движение создается с помощью магнитного поля генератора, трения или химической реакции в батарее. В основе процесса лежит свойство притяжения одноименно заряженных частиц и отталкивания противоположно заряженных.

В результате целенаправленного движения заряженных частиц под воздействием электрического поля возникает ток. Электрический может свободно передаваться через некоторые материалы, называемые проводниками. Например, медь и другие металлы, вода. Материалы, неспособные проводить ток, называют изоляторами. Хорошими изоляторами являются дерево, пластмасса, эбонит.

Статическое электричество

Статическое электричество образуется в результате нарушения баланса протонов и электронов внутри атома, возникающее, как правило, в результате трения. Еще одной причиной возникновения данного явления является соприкосновение двух диэлектриков, между которыми возникает разность потенциалов.

В быту человек практически каждый день сталкивается со статическим электричеством. Например, синтетическая одежда при носке и трении о тело накапливает небольшой заряд и при раздевании можно услышать легкое потрескивание и увидеть искры. Подобное явление происходит при расчесывании волос пластиковой расческой. Источниками статического электричества в квартире являются бытовые электроприборы, компьютеры, оргтехника. В процессе работы они электризуют мельчайшие частицы пыли, которые оседают на полу, мебели, одежде и коже человека, а также попадают в дыхательные пути.

Статическое электричество негативно влияет на здоровье человека. При длительном воздействии статический заряд может вызвать нарушения в работе центральной нервной и сердечно-сосудистой систем, потерю сна и аппетита, раздражительность, головные боли.

Самым ярким примером проявления статического электричества в природе является молния. Мощный электрический разряд образуется в результате скопления электронов в нижних слоях атмосферы.

Производство и использование электричества

Объем потребления электричества увеличивается с каждым годом. Оно необходимо для отопления, освещения помещений, обеспечивает работу промышленных предприятий. Все бытовые приборы, без которых немыслима жизнь человека, также работают от электричества.

Подавляющее количество электроэнергии для промышленных и бытовых нужд производится на электростанциях, которые вырабатывают электроэнергию с помощью генераторов и передают ее на большие расстояния по линиям электропередач. В зависимости от источника энергии электростанции бывают трех видов:

  • атомные - в качестве топлива используют радиоактивные материалы (уран и плутоний);
  • тепловые - работают на газе, дизельном топливе или угле;
  • гидроэлектростанции - турбины генератора вращаются потоком воды.

В качестве альтернативных источников электроэнергии используются ветровые установки, газогенераторы, солнечные батареи.